
L k

Report on the NASA FFT Project

Feasibility study, Software Design, Layout and

Simulation of a Two-Dimensional Fast Fourier

Transform Machine for use in Optical Array

interferometry

Valent/n Boriakoff, Wei Chen

Worcester Polytechnic Institute

July, 1990

NASA Gramt Number NAG 5 1138

Principal Investigator: Prof. Valentfn Boriakoff

Contents

1 Introduction 7

The Subcells

2.1

2.2

2.3

2.4

2.5

12

Edge Triggered D Fllp-Flop 12

The Multiplexer 13

The 24x24-Bit Parallel Multiplier 17

The Chip Timing Generator CONTR 19

2.4.1 Notation of Control Signals 19

2.4.2 Detail Description of the CONTR Implementation . 23

The Hidden Bit of the IEEE Floating Point Number 25

3 Modification of the Original Design

3.1

3.2

3.3

27

The ROM 28

The FPSS 31

The NORM 36

4 Simulation 41

The Signal Protocol 43

5.1 Operational Signals 44

5.2 The Chip Pinout 49

6 Applications of the SAFT64 50

List of Figures

1 Architectural Description of SAFT64 11

2 Logic diagram of the edge triggered D flip-flop 12

3 Block diagram of the 32ETD 14

4 Logic diagram of the multiplexer 15

5 Block diagram of the 32MUXD 16

6 Logic diagram of the 24x24-bit multiplier 18

7 Block symbol of the CONTR 20

8 Internal operational timing 21

9 2-bit counter 24

10 Logic diagram of the CONTR 25

11 IEEE floating point number standard 26

12 Logic diagram of the ZERO_DETECTOR 27

13 Overflow and underflow of two number's multiply 29

14 Logic diagram of the exponent handler 30

15 Block symbol for the FPSS 32

16 Schematic for the OP.SELECT 35

17 Schematic for the NEG_I=IANDLER 36

18 Logic diagram for the modified exponent 40

19 Control signals and simulation labels 42

4

20 I/O timing 45

21 The chip's pinout 49

22 Configuration of using SAFT64 to do 64-point FFT 51

List of Tables

1

2

3

4

5

Truth table for the control signals of the OP_SELECT 33

Truth table for the NEG_HANDLER 34

Another form of the data flow chart 43

Truth table of the step size 46

Truth table of the diagonal selection 47

1 Introduction

The NASA-CorneU University-Worcester Polytechnic Institute FFT chip based

on the architecture of the systolic FFT computation as presented i_h¢

l_r "FFT Computation with Systolic Arrays, A New Architecture," by

V.Boriakoff [BOR88] is implemented into an operating device desigmthrough

the agency of the NASA Grant NAG 5-1138. The kernel of the system, a

systolic inner-product floating point processor, was designed to be assembled

into a systolic network that would take incoming data streams in pipeline

fashion and provide an FFT output at the same rate, word by word. It has

been thoroughly simulated for proper operation, and it has passed a com-

prehensive set of tests showing no operational errors. The chip is labeled

SAFT64 (Systolic Array FFT- 64 point).

The following are the "black box" specifications of the chip, they conform to

the initial requirements of the design as specified by NASA.

Chip technology: CMOS 2micron (A = l#m).

Chip embodiment: 132 pin ceramic package, to be fabricated through MO-

SIS.

Chip area: 7.9mmz9.2mm.

Power supply voltage: 5.0v.

Input and output data format: IEEE Standard for Binary Floating-Point

Arithmetic (ANSI/IEEE Standard 754-1985), 32 bits.

Internal format: Changed from IEEE standard for computational purposes_

returned to IEEE standard at the chip output.

Input clock: 250 ns period with duty cycle from 30% to 70%. Simulation

showed proper operation for clock periods from 190ns to 400ns.

Input Reset: must be applied at least four clock cycles before the first valid

data word arrived at the input and has to be held high until after the first

clock positive rise. It should be dropped before the second positive rise of

the clock.

Input data timing: data must be present and valid 4ns before the correspond-

ing clock rise.

Input data sequence: the first data word A, present on the input data lines

must be the real part of the input data word, and the second data word Ai

must be the imaginary part of the input data word. A_ should be present

4ns before the first clock positive-going transition, Ai must be present 4ns

before the second clock positive transition, 250ns after the first clock positive

transition. The C_ input must be applied 4ns before the next positive clock

transition (500ns), and Ci must follow Cr 4ns before the following positive

clock transition (?50ns). All of these data words must be present for one

clock cycle. New A_ and Ai values should follow Ci immediately. After the

8

input data sequence (64 complex words) is complete a new sequence can start

at the next positive-going clock transition.

Output sequence: three positive clock transitions after the transition where

the input A, is applied A, appears at the output without modifiction. Here

we count the first clock transition as the one that took A, into the chip. After

A, appears, it is followed by Ai one clock period later. Yet one clock period

later the result of the computation real number R appears at the output.

One clock later I is presented at the output. See the timing diagrams.

Step size: Specifies the size of the step of the IV coemcients in the ROM,

it is a variable that depends on the location of the particular chip in the

processor array. See the text for setting values.

Diagonal specification: Two input lines LOWER and MAIN specify which

matrix diagonal is being computed in the multiplication. If the value of

LOWER and MAIN are 11, the upper diagonal is selected; 01 means main

diagonal; 10 means lower diagonal; and 00 is undefined.

Number of inner-product processors required: Based on the initial paper the

number of processors required is P = 31og2(N), where N is the (binary)

number of points in the transform, in this case 64, hence P = 18.

Total number of external memory locations required: The data requires

M = 2N - 41og2(N) + 2 memory locations (from the initial paper), hence

M = 106. An additional number of N one-bit memory locations are required

for the Reset signal.

In addition to our work, initial work was carried out by a Cornell University

graduate student (now graduated), Peter DelVecchio, whose collaboration we

gratefully acknowledge. His PhD thesis work consisted in the development

of hardware verification by software methods, he applied these methods to

the verification of those sections he designed for this project.

In the following sections, section 2 describes the five subcells. Their high level

function description, logic diagrams and simulation results are presented.

Section 3 deals with modification of the design. Since some errors have been

found in the ROM, some correction were made. At the mean time, the

original design would not be changed. Section 4 discusses simulation meth-

ods. Because a four-stage pipeline structure has been used, simulating such a

structure is more difficult than an ordinary structure. Section 5 explains chip

signal protocols and chip pinout, and Section 6 presents a concrete example

of how to utilize the SAFT64 array processors to implement a 64-point FFT.

All top level simulation results are included in the Appendix.

10

INPUTCM

I
i

23+1

/
/

Architectura.___.___lDescripti__on I.puTcE

23+1 INPUTAM INPUTAE 8 8

24+1 032 03! 8

o0 o;4 y 127
I--T.'.'.'.'.'.'.'._7 , /"

I _ I _ 24 8 _--j

,qS+l L_Z_Z_J

"],, 49/_ ,/ / _ --

I _ ,50+1 _ /

I -
, ,so _ 9- k,j

timing generator ! clock

OUT-DELAY l

_OUT

AMIN# - A mantissa input

CMIN# - C mantissa input

AEIN# - A exponent input

CEIN# - C exponent input

MP# - mantissa product

ES# - exponent sum

MDEL - mantissa delay

EDEI - exponent delay

Q - 24x24-bit],..plierm,, _ {

- multiplexor

Q = 9-blt adder

Q - 9-bit subtractor

subcell shift

weight generator

floating point

D flip-flop

Figure 1: Architectural Description of SAFT64

11

2 The Subcells

Subcells described here are basic components in the SAFT64 chip. Some of

them are repeatedly used in the chip layout. Since most data path widths

are 32 bits, for a control signal, 32 driving loads are typical. Therefore,

evenly distributing a drive signal is an important issue. All subcells have

been optimized in the meaning of speed and silicon area. Those cells may be

used in the future project as standard cells.

2.1 Edge Triggered D Flip-Flop

An edge triggered D flip-flop called ETD is the most common component

[MAN84] in the chip.

Q Qb

l reset

5d
CLK D

Figure 2: Logic diagram of the edge triggered D flip-flop

It is used as either a data latch or a time delay buffer. At the beginning

12

a level triggered D flip-flop was adopted. Since a level triggered D flip-flop

may change its output status at any time as long as the clock is asserted, it

makes chip timing difficult. But the level triggered D flip-flop occupied less

silicon area than a edge triggered D flip-flop . Here, in our case, silicon area

is not a very important issue because the chip uses a 79mm x 81mm frame,

there is a plenty of space left for future use. Anyhow, the silicon area for the

D flip-flop was minimized. The output of the D flip-flop will follow the input

at the time a rising CLK edge is received. This protocol is defined by chip

operation timing (see section 2.4 Chip Timing). Logic diagram for edge

triggered D flip-flop is shown in Figure 2 and schematic of the 32ETD is in

Figure 3. Every 8 flip-flops are driven by one big inverter which is, in turn,

driven by a CLk signal. Since the CLK delay to each flip-flop is the same

time, there is no clock skew problem here.

2.2 The Multiplexer

The MUXD is another frequently used subcell in the chip. It is a simple mul-

tiplexer. There are two inputs called A and B, one output O and one control

select A, when the select A signal is high, the output of the multiplexer is

following input A, otherwise, it follows input B. Logic diagram and schematic

13

CLK

Figure 3: Block diagram of the 32ETD

14

of the MUXD are shownin Figure 4 and 5 respectively.A driver wasadded

in the output level to improve the load capability. Simulation showed that

if this driver was not used, the MUXD would be very slow, sometimes it

would not work at all if the loads were too heavy. The same consideration

was applied to the MUXD control signal as ETD, every 8 multiplexers are

driven by a big inverter. According to the RSIM simulation, the delay time

from applying 1 to the select A to getting the input A at output is 3.6ns.

Vdd_

t
I ©:Jr

I

Figure 4: Logic diagram of the multiplexer

15

t t
MUXD MUXD

tTT,,,-
I I

a b a b

t t

b a a

"t _t t _t
MUXD MUXD MUXD MUXD

! I I I I - I I

t t t t

I I - I I - I I I I s,_

a b a b. a b a b

t t t t

ttl.t tttt ttt2 ttt_.
I I .1 " I I L" I I .I.- 1 I .I. "
I I - I I - I I I I s_

MUXD MUXD

I I I I s.:

bt a bt a bA

iiIt, II! II
a b a b a b

abt

(D MUXD

tttt
!- Ill,"

I I -

a b

a_ a_1

MUXD MUXD

I I I I sa

a b a b

t t_

MuxDIIMuxDttt_ ttt_
II_ II_ ii
a b a b

Tili;iiTi iti)

I I - J I

_ a_t
i

a b a b CTRL'

Figure 5: Block diagram of the 32MUXD

16

2.3 The 24x24-Bit Parallel Multiplier

This 24 bits multiplier is the biggest subcell in the chip. It has 24376 tran-.

sistors. The design of the multiplier is based on Joseph Lee's work [JOE87]

which was done in Hughes Research Laboratories in 1987. The advantage

of this approach is that design issues are minimal, and the layout is highly

modular. A logic diagram of the 24x24-bit parallel multiplier is shown in

Figure 1.3.1.

As we can see from Figure 6, the entire multiplier consists of three subceUs:

a full adder, an AND gate, and a half adder. For simplicity, all the half

adders were provided by connecting a carry input of the full adder to the

ground level. For better speed performance the last stage in Figure 6 is a

24-bit carry look-ahead adder instead of a ripple carry adder. Every four

pairs of the input bits constructs a carry group. Every four carry of such

groups was sent to a carry generator. Thus, there are three levels of the

carry generators, the first level was used for carry generation of four inputs,

the second level was for sixteen inputs or caries of four groups, and the third

level was for twenty four inputs. The final RSIM simulation shows that the

maximum multiplication time for two 24-bit numbers is 135 ns.

17

a23 a22 a21

b23 b22 b2i

a2 al a0

b2 bl b0

a23b21

a23b2

a22b23

a23b0 a22b0 a21b0 a2b0 alb0 a0b0

. a0

If I

iC 24-bit Carry Look-ahead Adacr

P47 P46 P45 P44 ?26 P25 P24 P23 P22 P2 Pl P0

Figure 6: Logic diagram of the 24x24-bit multiplier

18

2.4 The Chip Timing Generator CONTR

Timing sequences of the internal operation were generated by a on chip timing

generator called CONTR. A four-stage pipelined structure is implemented

and controlled by those timing sequences. Furthermore, an inner-product

function X -- A* B + C is calculated by such a structure. In subsection 2.4.1

the notation of control signals and their operational sequences are presented.

Subsection 2.4.2 focuses on the detailed description of the implementation.

2.4.1 Notation of Control Signals

Figure 7 is a block symbol for the CONTR. There is only one input to

the CONTR - an external clock. The outputs of the CONTR are A1, A2,

C1, C2, T1, T2, T3, M1, M2, M3, M4, NEXT, and REAL. See Figure 1,

Chip Architectural Description, for the meaning and position of those control

signals.

Since data flow for the mantissa on the left side is exactly parallel to that of

the right side for exponent, the control signals for both sides are identical. A1

is a clock signal for storage registers AMIN1 and AEIN1; A2 is for AMIN2

and AEIN2; C1 is a clock signal for storage registers CMIN1 and CEIN1; C2

is for CMIN2 and CEIN2; T1 is a clock signal for storage registers MP1 and

ES1; T2 is for MP2 and ES2; T3 is a clock signal for time delay registers

19

MI M2 M3

T
CONTR

timing generator

M4 T3 NEXT REAL CLOCK

TTI
reset

clock

Figure 7: Block symbol of the CONTR

MDEL and EDEL; T4 is a clock signal for LDEL; M1 is a " select A " signal

for multiplexers MIN_MUX and EIN_IUX; M2 is a " select A " signal for

MP_MUX2

and ES_MUX2; M3 is also a " select A " signal for MP_MUX1 and ES_MUX1;

M4 is a select A signal for OUT_MUX; NEXT is a clock signal for subcell

the ROM; and REAL is a control signal for ROM's REAL. Here some special

attention must be paid to NEXT and REAL. REAL is used to select a real

weight or imaginary weight in ROM. When REAL is 1, a real weight is

selected; otherwise, when REAL is 0, an imaginary weight is selected. The

timing sequences were drawn from the graphic explanation of the data flow

through the system [DEL90]. Some minor modification was made on his data

flow chart, please see Section 3. From his data flow chart, it follows that a real

weight or an imaginary weight must be repeated twice for a complex number

20

CLK

Ain(

Cin

AI,

Cl

C2

T3

M1

M2

M3

M4

NEXT

REAL

0 1 2

A_ × Ai >

q Cr

3 4 5

__i___h__j__

< Ar_ X A!_ >

__X _i >

I f

l J I I 1

[1 I]]

I I I

1 [

6 7

mL__

< _r+X C_+ >

Imam

i_1._

L J

I]

I l

l

l

I f R

Figure 8: Internal operational timing

21

inner-product,i.e.at the firstclock a realweight isoutput from the ROM_ at

the second clock the output of the ROM ischanged to an imaginary weights

at the third clock the same imaginary weight must be kept on the output of

ROM, and at the fourth clock the output of the ROM is changed back to

the previous realweight. It appears that a memory location has to contain

two weights,when REAL is1,the output of the ROM isa realweight, while

REAL is0, the output isan imaginary weight of the same location.Ifthere

isa risingedge transitionon the CK of ROM, the ROM willstep to the next

location. Therefore, the external clock cannot be directlyconnected to the

CK of the ROM. This CK signalmust be driven by a signalcalledNEXT

which is generated by the CONTR. Through the data flow chart it iseasy

to see that TI, T2_ and T4 are equal to CLOCK; and AI is the same as A2.

The CLOCK isan internalsignalwhich has severalgates delay time related

to the external clock. This delay isartificiallyintroduced to compensate for

the delay generated by the 2-bit counter. More detailsare described in the

next subsection.The chip timing sequences are plotted in Figure 8.

Those are the timing sequences necessary for internaloperation. The

timing sequences of input and output data as well as chip external control

signalsare described in detailin Section 5.

22

2.4.2 Detail Description of the CONTR Implementation

Basically the CONTR consists of two parts, a 2-bit counter and logic net-.

works. Two edge triggered D flip-flops, two transmission gates and two in-

verters are employed to construct a 2-bit counter. Figure 9 is a logic diagram

of the 2-bit counter. The 2-bit counter must be triggered at the rising edge

of the clock signal. When RESET is high, the outputs of the counter are 00,

independent of the changing of CLK. When RESET goes low, on each rising

edge of CLK, the outputs of the counter are 01, 10, 11, and 00 respectively.

Two drivers are added between the D flip-flops and transmission gates to

increase the driving capability of D flip-flops. Other signals could be derived

from the output of the 2-bit counter and the clock signal. Equations (1-13)

show such relations among the output of the 2-bit counter and the clock

signal.

The logic equations for the internal functions are :

A1 = CLK . Q,; (1)

A2 = A1; (2)

CI = CLK • Q1; (3)

C2 = eLK * Q1; (4)

T1 = eLK; (5)

23

CLK

D

ETD

CLK

I
D

ETD

RESET

Figure 9: 2-bit counter

NEXT

REAL

T2 = CLK; (6)

Ta = CLK • Q0; (7)

M1 = Q0 + Q]; (8)

M2 = Q0; (9)

Ma = Qo; (10)

M4 = QoexorQ]; (11)

= Q1; (12)

=]I/4. (13)

Figure 10 shows a logic diagram of the CONTR. The upper part is the

logic networks for the above control signals and the lower part is a 2-bit

counter.

The delay unit depends on the time delay specified by the 2-bit counter. Ac-

24

NEXT REAL M4 C1 A1 C2 T3 M2 M3 M1

Q1 Qlb Q0 Q0b

2-BIT COUNT<}_

_SET I CLOC I-

Figure 10: Logic diagram of the CONTR

tually, the 2-bit counter has a 8.4 ns delay . Therefore, the internal CLOCK

is 8.4 ns later than the external clock CLK. Each control signal has been

buffered so that bigger loads may be driven.

2.5 The Hidden Bit of the IEEE Floating Point Num-

bet

The IEEE floating point number format contains a hidden bit which is the

most significant bit of the mantissa [IEEE85]. For convenience of reading,

the IEEE floating point number format is redrawn in Figure 11.

25

sign bit exponent field (8 bits) mantissa field (23 bits)

_ implicit decimal point. 11oI[.
31 30 29 23 22 21 0

Figure lh IEEE floating point number standard

As we can see, there are a 23-bit mantissa (b22...b0), a 8-bit exponent (

b23...b30) and a sign bit (b31) for mantissa. The decimal point of the float-

ing point number is between b23 and b22. For a normalized IEEE floating

point number, the most significant bit must be 1, which is not represented

in the IEEE floating point number format, and it must be generated by the

hardware. The most significant bit of the mantissa is located to the left of

the implicit decimal point. The exponent is offset by 12710, such an expo-

nent is called biased one. We assume that all floating numbers input to the

SAFT64 are normalized to the IEEE floating point number. That means in

most cases the hidden bit is a 1 except that the input number is a 0. When

the input is a normalized zero, the exponent of this number must be zero.

Therefore, a zero detector must be inserted in front of input latch AMIN1

and CMIN1. This zero detector is not drawn in Figure 1 for clarity in the

26

chip architecture. The function of the zero detector is quite simple, if 8-bit

exponent is 0, then sets the hidden bit (MSB of mantissa) to zero, other-

wise, it sets it to one. Figure 12 shows a logic diagram of the zero detector.

zer

e7 e6 e5 eG

Figure 12: Logic diagram of the ZERO_DETECTOR

3 Modification of the Original Design

Some errors have been found in Delvecchio's design layout when the RSIM

simulation is run for the ROM, the FPSS and the NORM subcells. The

SHIFT subcell works perfectly. There were too many details to be considered

at the design stage, some errors were be unavoidable. Those errors could only

be found at the simulation of the integrated block.

27

3.1 The ROM

There were two obvious errors in the subcell ROM. The most significant

bit of the ROM is "032" which corresponds to the hidden bit of an IEEE

floating-point number. It should be a 1 for a normalized IEEE floating-point

number, and it should be a 0 if the value of the number is zero. In practice,

the output of this bit is inverted. To correct this mistake, an inverter was

added in the last stage of the bit 032.

The second error was the output of the exponent. As we know, the ex-

ponent of the IEEE standard floating-point number is biased, and this bias

value (offset) for single precision is a decimal value of 127. the range of this

exponent is from 1 to 254. When two IEEE floating-point numbers multiply,

their exponents are added. The range of new exponent is from 2 to 508 which

is beyond the IEEE exponent range 1 to 254. To fit this range into the IEEE

exponent range any exponents which are less than 128 or greater than 381

must be eliminated_ see Figure 13.

If the exponent of the ROM coefficients was not biased, we would be able

to avoid such an exponent range mapping problem. Unfortunely, the true

exponent output of the ROM was designed as biased one by Devecchio. To

solve this problem, a subtractor is inserted after the two exponents are added.

This subtractor always subtracts a decimal value of 127 from the exponent

28

5O8

381

254

128

In the IEEE floating point number standard

e :]27 + E; 1 <- e <- 254_

-126 <- E <- 127.

When two numbers multiply, their exponents

ale a_dcO, i.e.

el _ e2 = 127 ÷ El ÷ 127 + E2 - E s

To express this new exponent in a 8-bit word,

]28 <= Es <_ 381, and

_n _ Fs - 127.

Figure 13: Overflow and underflow of two number's multiply

sum E, and the result i5 called the normalized exponent E,. Figure 14 shows

a modified block symbol of the exponent adding unit. The subtractor actu-

ally is a 9-bit adder. One input of the 9-bit adder is E,; another one is a 2%

complement number of the decimal number 127. If the Carry of the adder is

1 (indicated a positive result), S0_s are sent to the NORM; if the Carry is 0

(a negative and an underflow), $8,7 are set to 11, at this time the exponent

becomes an exponent that is greater than 256. The purpose of setting Ss,r to

11 is because the NORM has only one exception handling capability; if the

exponent is greater than 256, set the output exponent vector to 0 to indicate

an overflow. Thus, if the normalized cxponent is less than zero, then the

subcell NORM will set this floating point number to zero. The reason for

29

this is quite straightforward; the number is too small to be presented by any

other number except zero. If the normalized exponent is greater than 381,

the output of the most two significant bits of the subtractor are automatically

11 which indicates an overflow. In turn, this nine bits exponent is fed to the

NORM. The NORM should treat this exponent as an infinite or overflow,

but for original design reasons it sets this floating-point number to zero.

o32 o311 _/
o23 WGEN o30 /

o0 02_ I

8
/

e]

o

o n

)
127

_y-

Figure 14: Logic diagram of the exponent handler

Another problem with the ROM is that the exponent stored was actual ex-

ponent plus three. This was resulted from the fact that a floating-point

multiplication and an addition wilt shift the decimal point left at different

stages. Since the decimal point is implied in the data, the shift operation

is simply relative to the most significant bit of data instead of the decimal

point. After A * B has been carried out, the implied decimal point is on the

left of the most significant bit. While A * B + C is calculated, the implied

decimal point of C is on the right of the most significant bit of C. If two

3O

numberswith differently decimalpoint positions are to be added together,

this fact leads to a computational error. For more details see Section 3.3 The

NORM.

3.2 The FPSS

Figure 15 is a block symbol of the FPSS. Notice that one of inputs is inverted,

FPSSRb, since this input was connected to the output of SHIFT and one

of these output was inverted. This is a very important factor when design

the OP_SELECT in the following section. The functions of FPSS are to: 1)

convert inputs to the correct representation according to current operations

- OP_SELECT; 2) add two numbers together - FA52; 3) change 2's com-

plement number back to sign magnitude number if the result is negative -

NEG_HANDLER; and 4) set the exponent of the floating point number to

zero if the result (mantissa) is zero - ZERO_ttANDLER.

Three points of the original design in FPSS have been modified. First,

all control signals for multiplexers were changed from low effective to high

effective; second, the outputs of adder FA52 are high effective; third, the

logic of converting a negative result back to sign magnitude number in

NEG_HANDLER has been changed. Some modifications shown in the fol-

31

FPSSL FPSSRb
S! $2 SUBTRAT

OP SELECTOR

I SUBTRACTION

49_ Mlp

FA52 (49-bit adder)

0_ SUM49b S]

NEG HA,_,[]l-_,R

I ZERO_HANDLER

5O

9 /
SHE SHM sign

S1 is sign of input A; $2 is sign a[it:put R.

Figure 15: Block symbol for the FPSS

32

SUBTRACT $2 S1

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

SUBTRACTION OP_CTR2 OP_CTRI

0

0

1

0

1

0

1

1

I 1

0 1

0 1

0 0

Table 1: Truth table for the control signals of the OP_SELECT

lowing figures are just for logic simplicity. When two 49-bit numbers are

added together the result may be a 50-bit number. Here in FPSS a subtrac-

tion A - B (A > 0 and B > 0) is implemented by converting B (49 bits not

including sign bit) into 2's complement number, and then added it with A.

The sign bits of both A and B do not participate in the adding operation.

The sign of the result is determined by bit49 SUM49, signs of A and B (

S1 and $2), and what operation is being done (addition or subtraction).

Table 1 and 2 illustrate such relations among the above logic variables.

As shown in Table 2 , when a true subtraction is carried out, the bit 49 of

33

SUBTRACTION SUM49b

0

0

0

0

1

1

1

1

S1 SIGN NEG_CTR

0 0 0 0

0 1 0 0

1 0 1 0

1 1 1 0

0 0 0 1

0 1 1 0

1 0 0 1

1] 1 0

Table 2: Truth table for the NEG_HANDLER

the 49-bit adder FA52 determines the sign of result which is already in sign

magnitude format. Therefore, even though a result is negative, only bit 0 to

bit 48 need to be inverted.

Figure 16 is a logic implementation of Table 1. Two control signals OP_CTR1

and OP_CTR2 are used to control two exor vectors. When OP_CTRI or 2

is logic zero, the outputs of the exor vectors remain the value of the inputs.

When OP_CTR1 or 2 is logic one, the output of the exor 49-bit vectors might

be opposite to the inputs. Initinally, a transmission gate was used instead of

an exor gate, but it could not be driven by the SHIFT subcell. It then was

replaced by an exor gate before the final simulation. Figure 17 shows how

34

51
SUBTI_,C _. S)

MIP M2E 7

SUBTk_A_II !_3N_', ;1 _ R2 CP CTR!

Figure 16: Schematic for the OP_SELECT

a sign is determined and when a data is converted back to sign magnitude

representation. Here SUM49b is the most significant bit of the 49-bit adder

FA52. If SUBTRACTION has been done by the FA52, the sign of the final

result depends on SUM49. If SUM49 is zero, then the result is negative and

needs to be converted back to the sign magnitude format; if SUM49 is one,

no conversion needs to be done. If a additon (SUBTRACTION = 0) has

been done, the sign of the final result depends on 3'1.

35

S UM49

b
c

49-blt Adder

SUM49b

NEG C]RL

SUBTRACTION $I

Figure 17: Schematic for the NEG_HANDLER

3.3 The NORM

As has been stated in the description of the IEEE floating point standard

(Section 2.5), the implied decimal point is located between b22 and b23.

In this section a more detailed discussion about the decimal point which is

shifted after a multiplication and an addition is given.

Since a normalized IEEE floating point number is greater or equal to 1

and less than 210, the product of such two numbers is greater or equal to 1

and less than 410. The decimal point will be shifted as in the following binary

representation:

1.b22bnb2o...blbo * 1.bnb_lb2o...blbo = b4_b4s.b4sb44b43...babo.

36

Notice that the product is a 48-bit word because two multiplicands are 24-bit

words. In order to calculate a complex number inner-product, four multipli-

cations and four additions are needed:

R,,,a = A, * W, - A, * I_ + C,

I_t = A, * W_ + A_* W, + C_.

Let 11 be A, * Wi and 12 be Ai * H_ . Then,

I1 +I_ = b47646.b4sb44b43...blbo +b47b46.b45b44b43...blbo =

b4sb4_b46.b4_b44b43...blbo; and

I_t =Ii+I2+Ci = b49b4sb47b46.b45b44b43...bxbo.

Thus, the decimal point must be shifted left by three at the last stage. Now

the problem was that in the internal stage the decimal point is not fixed,

extra care must be taken by the designer. What DeVecchio did was that

three was added to the exponent of the weight, it was equal to pre-shifting

the decimal point left by three. In the internal stage any input number could

be treated as if it had only one digit to the left of the decimal.

In practice, some difficulties arose. After adding three to the exponent,

11 or 12 become x.xb47b4sb45...blbo, where x.x did not exist in hardware,

37

but we treaded them as if they exist in the written representation. Thus,

I1 + 12 = z.b4sb4Tb4a...blbo =/3. When/3 + Ci, the decimal point should be

in the same position, i.e.

then, the SHIFT will move the smaller one of I3 and Ci right according to

the difference of two exponents. Since the z bits do not exist, it is equivalent

to having/3 shifted left one more bit, thus generating an error. Therefore, a

zero must be added in the most significant bit of I3 to keep the decimal in the

same position. Because the inputs of the StIIFT are two 49-bit ports, there

is no more space for such an extra bit. Thus, I3 or R3 must be truncated

off one more bit so that a zero was added as the most significant bit. This

was accomplished by wiring bit 49 of/3 or R3 to bit 48 of the input port of

SHIFT , and other bits were shifted one more bit to the right also. Notice

that the bit 49 of/3 or R3 is always zero.

After a zero was inserted in Is or R3, the calculation of/3 or R3 plus C_ or

C_ was correct. But pre-shifting the decimal point three bits still has an-

other problem, i.e. shifting the decimal point three bits reduced the dynamic

ranges of additions. If there was no pre-shifting, I3 or R3 would have three

digits to the left of the decimal point. Thus the addition of/3 or R3 plus G'i

38

or C_ would be

zzzz.zzzzzzzzzz...zzzz _ final result I or R

Then, three was added to the exponent to indicate that the decimal point

was always shifted three bits. Obviously, the location of the decimal point

would be fixed and easy to be found. If there were zeros to the right of the

decimal point after adding three to the exponent, cell NORM would be able

to handle it.

Let us now look at the case where pre-shifting has been done. In or Rn

plus Ci or 6', becomes

O._:_xzx_x_z_:...xzz_ _ I3 or R3

+ 1.zzzzzzz _ Ci or C,. (2.5.2)

zz.zzzzzzzzzz...zzzz _ final result I or R

There were two digits to the left of the decimal point, which meant that

to convert the final result to the normalized IEEE floating point number,

there was one more bit to be shifted to the right though we had concluded

that the decimal point must be fixed in the position one digit left in any

39

internal stages. In other words, the final result was bigger than we expected.

Comparing calculation 2.5.1 with 2.5.2, we could see that pre-shift decreased

the dynamic range of additions. In calculation 2.5.1 there were three digits to

the left of the decimal point, to put Ci's decimal point in the same position

two zeros were implicitly inserted, which ensured that the final result was

less than 1010 or four digit to the left of the decimal point (see DeVecchio's

thesis, Section 2.7). In calculation 2.5.2, there was only one digit to the

left of the decimal point and the most significant bit of Ci was always one, a

carry may be generated, which led to the fact that the final result was bigger

than it should be.

II SH IFT-_:X;:ON_NT

Figure 18: Logic diagram for the modified exponent

To solve this problem, a 1 was added on the exponent before it was fed to

NORM as shown in Figure 18. As we had accepted the pre-shifting decimal

point, there should be no trouble in accepting a post-shifting of the decimal

point. In reality, a 9-bit adder was used between FPSS and NORM, and

40

adding oneor not adding it depended on the ZERO_HANDLER in the FPSS

subceU. If the output of the ZERO_HANDLER was not zero, a 1 was added

to the exponent; otherwise, a 0 was added.

4 Simulation

The simulation was done using RSIM. Since a four-stage pipeline structure

was employed, it made the simulation more difficult. The only way we could

do it was to put simulation labels at the outputs of each component to track

what was going on. Each label represented a test point. At each point we

see a vector consisting of several bit components. We use a bit to express

a particular component of a vector in the following paragraph. The labels

used in the simulation are shown in Figure 19.

There are four input vectors, exponent of input A - INPUTAE, mantissa

of input A - INPUTAM, exponent of input C- INPUTCE, and mantissa of

input C - INPUTCM. INPUTAE is a 8-bit vector which is used to express

an exponent of an IEEE floating point number. INPUTAM is a 24-bit vec-

tor which containes the sign bit of an IEEE floating point number in bit

INPUTAM23 and mantissa from bits INPUTAM22_0. The same protocol is

applied to INPUTC. INPUTAM and INPUTAE are called as input port A,

41

Control Signals and $imulatlon Labels

032 o31

o23 WGE.:N 030

o0 024

NEXT REAL reset

M3 M3

M1

127

8

SHIFT-MANTISSA SHIFT-EXPONENT

4

FPSS

24

5O

T3

Control

signal

[_}_ Simulation
label

AI&A2 CI C2 MI M2 M3 M4 TI&T2 T3

t tt t t tt tt t
CON'] R

t [_!nq ,'}o_erat or

NEXT REAL

Figure 19: Control signals and simulation labels

42

CLK IN ROMB SUM PAE BAI_ $HJ SHK SHE NORE

MUL ZOMM PRO FAM BAM SHR SHL SHM NORM OUT

0 Ar A_ Wv R 1 X X X X X X X

1 A i A_ w i R 2 R l R_ X X x X x

2 Cr A_ Vlr i i1 R3 R 3 R 1 R 2 R 3 X l

3 C i C_ Wr 12 It I 1 R 3 - Cr R 4 X X X

4 Ar I Ar le Wr | RI 1 12 13 I] 12 13 R Ar

8 Ail Ai 1# wrl R21 RI 1 R1 I i3 Ci 14 R A i

e Crl crl t Wf I J'l 1 R21 R3 I RI I R2 | R31 1 R t

? cil Ai 11 Wr I I21 I11 Ii 1 R3 I Cr 1 R41 I I'

Table 3: Another form of the data flow chart

and INPUTCM and INPUTCE are called as input port C. Since both real

and imaginary numbers are input through port A and C, we use A, and Ai

to indicate the real part of A and the imaginary part of A. The same rule

was applied to C. Table 3 is another form of the data flow chart, where z

indicated a "don't care" item, a superscript number indicated a sequence of

the input data, and superscript ' indicated a normalized item.

5 The Signal Protocol

In this section some basic timing for external signals are introduced, and

those timing relations are derived from the RSIM simulation, they may

change slightly after the chips are tested. Another part of this section is

43

the pinout of the SAFT64. There are total 132 pins on the chip, of which

112 pins have been used, 20 pins are left unused for future extensions or chip

test pins. The timing described here does not include differential pat delays.

5.1 Operational Signals

There are eight signals which control the operations of the chip, and there

are three data ports on the chip.

1. CLOCK (input): this signal is provided by the users. The typical clock

period is 250ns with duty cycle from 30% to 70%. Simulation showed proper

operation for clock periods from 200ns to 400ns.

2. RESETI (input): this signal sets the weight generator WGEN to the first

memory location and the timing generator CONTR to start state. It must

be applied at least four clock cycles before the first valid data word arrives

at the input port A or C and it has to be held high until the first data is

stable at the data port, i.e. it may be turned off 4 ns after the first data is

applied. It should be dropped before the second positive rise of the CLOCK.

3. RESETO (output): an output signal to the next chip. It is just a four-

clock cycle delay of the RESETI. When many chips are cascaded together,

the external signal Reset goes to the first chip, and the RESETO of the first

44

CLK

Ain

Cin

resel

STO

ST1

ST2

MAIN

I
LOWEF

0 1 2 3 4 5 6 7 8 9 i0

F-3__/--L__F--L_
C iDC D t I
I i l i I

'l 'J ' k/) ' L9

v

© Minimum valid data time is 4 ns

r # #

ii ii I I I |

_j

Q Previous data off time is 6 ns

Q High for at least 4 clock =_erJodr.

Q The time of Reset off mu_t be in the interval of the first data

Q The input appears at OULpL_L a_:er 4 _:iock cycles it is input to the chip,

and thls time is the same as O •

Q Same as Q

O Same as Q

Q Sameas Q

Here CLK is an Internal c]o_-:_ wh:ch is 8.2 ns later than external clock.

Other signals must be kent c_','c,;tar:', dlJr!q the operation. The above _a a_

example, thestep size is 4, an_," the m_n diagonal weight is selected.

Figure 20: I/O timing

45

ST2 ST1 ST0 STEPSIZE

0 0 0 1

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 0 undefined1

1 1 1 undefined

Table 4: Truth table of the step size

chip will be connected to the RESETI of the second chip, etc, (See Figure 22.

4. Step size ST0, ST1 and ST2 (input) : the three control lines identify the

position of the chip in the processor array and move the memory pointer of

the weight generator to the proper location. Table 4 shows the functions of

those signals. ST0, ST1 and ST2 must be connected to GND or Vdd during

chip operation.

5. Weight Diagonal specification MAIN and LOWER (input): the com-

bination of those two signals is to determine which diagonal of the weight

ROM is used in the current calculation. There are three diagonals in the

46

MAIN

1

0

1

0

LOWER

0

1

1

0

DIAGONAL

main

lower

upper

undefined

Table 5: Truth table of the diagonal selection

ROM, the MAIN, the LOWER and the UPPER. Table 5 shows how a diago-

nal is selected by those two signals. MAIN and LOWER must be connected

to GND or Vdd during the chip operation.

6. Data Port A (input): is a 32-bit data input port for digital signals.

Here the so-called digital signal means the digitized data obtained from A/D

sampling and some filtering real and imaginary words in sequence.

7. Data Port C (input): this 32-bit data port accepts the data generated by

the next SAFT64 chip (See Section 6).

8. Data Port O (output): outputs the results of calculating A * W + G' by

the chip under consideration.

We assume that all data input to port A and C are normalized IEEE floating

point numbers. The output of the port O is a normalized IEEE floating

47

point number also. Notice that the SAFT64 does not fully support the

IEEE floating point standard; NAN and positive and negative Infinite are

not included in the possible outputs of the Port O. The input data must be

valid 4ns before each clock rise, see Figure 20.

Data input sequence: the first data word, A,, must be a real number and the

second data word, Ai, must be an imaginary number, both A, and Ai are the

real and imaginary parts of the first input data point. The G, input must

be applied before the next positive clock transition and Ci must follow G, at

the next clock transition. All of these data words must be present for one

clock cycle and must be valid 4as before the rising edge of the clock. New

A_ and Ai values can follow Ci immediately. After the input data sequence

(64 complex words) is complete a new sequence can start immediately.

Data output sequence: after A, is applied four clock positive transitions, A,

appears at the output without modification. Here we count the first clock

transition as the one that took A_ into the chip. After A, appears, it is

followed by Ai one clock period later. Yet another clock period later the

result of the computation real number R appears at the output. One clock

later I is presented at the output.

48

5.2 The Chip Pinout

There are total 132 pins on the chip, of which 112 pins are used. Pin 1, Pin

67, Pin 101 and Pin 112 are ground GND; Pin 34, Pin 100, Pin 110 and Pin

124 are positive 5 volt power supply Vdd. Port A occupies Pin 2 to Pin 33;

Port C uses Pin 43 to Pin 66 and Pin 125 to Pin 132; and Port O carries Pin

68 to 99; Pin 35 to 42 are control signals; and Pin 102 to 127 are test pins

which are not used by the users. Figure 21 shows this configuration.

Vdd

CLOCK ---m

ST0

ST1

ST2

MIAN
RESETI

RESETO _--

LOWER

CM0
CMI

CM2 ---m

CM20

CM21

CM22 ---m

Sc

Sa AM22 AM20 AM4 AMP AMO AE/ AE2 AE0

33 32 3130 14 13 i211 ;; 9 4 3 2

34

35

36

37

38

39

40

41

42 SAF]64

43

44

45

46

63

64

65

66

6768 6970

GND ON0 ON2

GND

1

132 ._--- CE7

131 4:-- CE6

!25 _ CE0

124 "_--- Vdd

]23 -'-I" A1

i22 _CI

121 ---_C2

120 _ M1

117 _M4

116 --'a_T3

115 _NEXT

114 ---a_Tl

113

112 _--GND

I]0 q_--Vdd

_---GND

"_-"Vdd

102

I01

i00

8687 8[_ _'q q£ _%192 q6 91 q8 99

$ 15151 ¢I
OMI80M2O OM220EOC?IIOE50E6OE7 So

Figure 21: The chip's pinout

49

6 Applications of the S AFT64

A configuration using SAFT64 chips to implement a 64-point FFT is shown

in Figure 22. Eighteen SAFT64 chips are used. All control signals have been

wired to proper terminals. Since the chips in different levels have different

delay time which has been fulfilled by internal delay registers, and the delay

time of those registers is determined by ST0, ST1 and ST2. Therefore,

connection of the chips is quiet straightforward and simple.

50

ASAFT64_ 1] A _ ! -
_-[_FT_°

SAFT64 SAF'T64 SAFT64

C C C IEEE

-_ L_I--T-} _ I_EZZ_--_ _ out

CLK4

CLKI

 JqJ JA/-tfl_
I I I

_A O Special

C SAFT64 !)olay R 1

C

Delay rc_Oister i_

SAFT64 is driven by CLK4

A

CLK

SAFT64

0

C

RESETO

Figure 22: Configuration of using SAFT64 to do 64-point FFT

5]

References

[BOR88] Boriakoff, V.,"FFT Computation with Systolic Arrays, a New

Architecture", Submitted for publication by V. Boriakoff, Worcester Poly-

technic Institute, 1988.

[MAN84] Mano, M. Morris Digital Design, Printice Hall, New Jersey,

lg84.

[JOE87] Kamark, Joefery, " A High Density 8z8 Parallel Multiplier",

IEEE transctions on Circuit and System, vol , 1988.

[DEL90] DelVecchio, P. E. The Design and Formal Verifcation of an

Integrated Circuit for Use in a Floating-Point Systolic Array Fast Fourier

Transform Processor, Master Thesis, Cornell University, Ithaca, New York,

1990.

[IEEE85] IEEE Standarcl for Binary Floating-Point Arithmetic, (ANSI/IEEE

std 75_-Ig85), New York: The Institute of Electrical and Electronics Engi-

neers.

52

Appendix

The following is a simulation file which was produced by the RSIM simula-

tion. All simulation labels n the file are coresponding to the labels in Table 3.

For ezamplet a MUL in Table 3 corespones to "multin" in the simulation file;

a FAM in the table means "farmm" in the file. Since the width of the paper

is not wide enough to hold so many simulation labels, abbreviations of those

labels have to be used in Table 3.

53

